0%

雪花算法

在做商城项目中对于分布式生成订单对应的订单id使用了Twitter的雪花算法进行了处理,非常好用!

原理

雪花算法采用最多64位来生成唯一id的,在Java中64bit的整型是long类型,因此可以使用long类型进行存储。

  • 最高 1 位固定值 0,因为生成的 id 是正整数。
  • 接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69.73 年。
  • 再接下 10 位存储机器码,包括 5 位 datacenterId[数据中心ID(031)] 和 5 位 workerId[工作机器ID(031)]。最多可以部署 2^10=1024 台机器。
  • 最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

对比

  • 自增ID:对于数据敏感场景不宜使用,且不适合于分布式场景。
  • GUID:采用无意义字符串,数据量增大时造成访问过慢,且不宜排序。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/**
* 唯一id生成器
*/
public class SnowflakeIdWorker {
// ==============================Fields===========================================
/** 开始时间截(2022/6/27 19:02) */
private final long twepoch = 1656327720682L;

/** 机器id所占的位数 */
private final long workerIdBits = 5L;

/** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L;

/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

/** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

/** 序列在id中占的位数 */
private final long sequenceBits = 12L;

/** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits;

/** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits;

/** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits);

/** 工作机器ID(0~31) */
private long workerId;

/** 数据中心ID(0~31) */
private long datacenterId;

/** 毫秒内序列(0~4095) */
private long sequence = 0L;

/** 上次生成ID的时间截 */
private long lastTimestamp = -1L;

//==============================Constructors=====================================
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31) 此方法是判断传入的机房号和机器号是否超过了最大值,即31,或者小于0
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}

// ==============================Methods==========================================
/*
* 核心方法
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
//1.获取当前的系统时间
long timestamp = timeGen();

//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}

//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
// sequence 要增1, 但要预防sequence超过 最大值4095,所以要 与 SEQUENCE_MASK 按位求与
// 即如果此时sequence等于4095,加1后为4096,再和4095按位与后,结果为0
sequence = (sequence + 1) & sequenceMask;
// 毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}

//上次生成ID的时间截
//把当前时间赋值给 lastTime, 以便下一次判断是否处在同一个毫秒内
lastTimestamp = timestamp;

//移位并通过或运算拼到一起组成64位的ID
long id = ((timestamp - twepoch) << timestampLeftShift) // 时间戳减去默认时间 再左移22位 与运算
| (datacenterId << datacenterIdShift) // 机房号 左移17位 与运算
| (workerId << workerIdShift) // 机器号 左移12位 与运算
| sequence; // 序列号无需左移 直接进行与运算
return id;
}

/**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}

/**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}

//==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
long id = idWorker.nextId();
System.out.println(id);
}
}